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Abstract: Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-
threatening exudative maculopathy, and pigment epithelium detachment (PED) is an 
important clinical characteristic. Thus, precise and efficient PED segmentation is necessary 
for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via 
deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid 
issues associated with manual PED segmentation (subjectivity, manual segmentation errors, 
and high time consumption).The optical coherence tomography scans of fifty patients were 
quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN 
outperformed existing PED segmentation methods for all segmentation accuracy parameters, 
including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 
8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 
0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with 
multiple types of PEDs and agrees well with manual delineation, suggesting that it is a 
potential automated assistant for PCV management. 
© 2017 Optical Society of America 
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1. Introduction 
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common, vision-threatening 
exudative maculopathy. Pigment epithelium detachment (PED), which occurs secondary to 
leakage and bleeding beneath the retinal pigment epithelium (RPE), is an important clinical 
characteristic of this chorioretinal disease. As PED volume can predict the treatment outcome 
of PCV disease [1–4], precise and reliable PED segmentation is required for quantification in 
clinical practice. Generally, PEDs can be divided into the three following types: serous, 
vascularized and drusenoid PEDs [3]. This work focuses on PEDs among PCV patients, i.e., 
serous and vascularized PEDs. Serous PED is caused by a collection of fluid in the sub-RPE 
space [5, 6]. Vascularized PED, which is the result of angiogenesis and sub-RPE 
neovascularization, is more sight threatening than other types of PED but is more responsive 
to treatment [7, 8]. Drusenoid PED seldom appears in PCV patients because it is caused by 
drusen, which is uncommon in PCV patients [9]. 

Compared with other imaging modalities, optical coherence tomography (OCT) provides 
noninvasive, in vivo, high-resolution cross-sectional view [10]. OCT is now the preferred 
imaging modality for PCV disease management and has been widely utilized for PED 
segmentation [1, 11, 12]. As manual interpretation of PED images is time consuming and 
prone to human errors [13–15], recent research studies are developing computer-aided 
diagnosis systems to provide efficient, reproducible and reliable information [16]. However, 
three main challenges significantly impede precise PED segmentation: (1) distorted 
morphology that limits the use of prior knowledge [17]; (2) blurred boundaries by unexpected 
speckles and undesirable abnormalities impeding precise delineation; and (3) intensity 
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inhomogeneity between serous and vascularized PED that hinders accurate segmentation. As 
illustrated in Fig. 1, serous PED appears as an arch-shaped region with homogenously hypo-
reflective regions below the RPE layer, whereas vascularized PED has heterogeneous signals 
with hyperreflective vascular lesions and hypo-reflective lumens beneath the RPE layer [3]. 
Thus, the homogeneity among the neighboring tissues together with the heterogeneity within 
PED pose difficult challenges for automated segmentation of vascularized PED in PCV 
patients. 

 

Fig. 1. An example of serous and vascularized pigment epithelium detachments (PED). (a) is a 
cross-sectional OCT image of serous PED, and (b) is a cross-sectional OCT image of 
vascularized PED. (c) and (d) are the 3D visualizations of the segmentation results with the red 
region representing the PED regions and the green surface representing Bruch’s membrane 
(BM). 

Several computer software algorithms have been proposed for the purpose of PED 
segmentation from OCT images, including the conventional threshold-based and more recent 
graph theory-based methods (state-of-art methods) [13, 18–21]. All aforementioned methods 
were reliant on carefully hand-crafted, low-level image features, which are sensitive to image 
quality and intensity variance, and therefore sometimes result in non-reproducibility under 
different scenarios (serous and vascularized PEDs). In recent years, with the emergence of 
deep neural networks (DNN), there has been tremendous improvement in the ability to 
automate feature extraction in which the learned features are highly convolved to encode the 
intrinsic structures of the image for classification, recognition and segmentation [22, 23]. 
DNN methods have been successfully applied to bio-image segmentation of tissues, such as 
prostate, skin, liver and bone tumors [24–29]. Among the existing DNN methods, FCN and 
U-Net are the representative structures for bio-image segmentation [30, 31]. FCN embeds 
fully convolution layers on DNN and then employs a deconvolution layer to gain a 
segmentation probability map. Compared to FCN which directly upsamples feature maps, U-
Net uses a sequence of upsampling and convolution layers to progressively enlarge feature 
maps. In terms of OCT image, DNN had also been applied successfully for layer boundary 
segmentation in OCT. A DNN segmentation model associated with graph search was 
proposed on OCT images [32]. Roy et al. proposed purely DNN model (ReLayNet) to 
achieve retinal layer and fluid segmentation [33]. Among the aforementioned DNN model, 
we adopt FCN to construct our progressive learning scheme as FCN is a classic and general 
model for image segmentation [30]. 

In this study, we propose a novel DNN-based framework to automatically segment PEDs 
in PCV patients. We validated this framework against two specialists as well as other state-of-
art algorithms on PED segmentation performance. To the best of our knowledge, we 
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presented the first dual-stage DNN learning framework for automated PED segmentation on 
PCV patients. The novelty of this paper is the dual-stage DNN learning. We first learn the 
BM layers on images via DNN; then we employ the obtained BM layers as constraints to 
assist another DNN to segment PED regions. While the single-stage network cannot solve 
different types of OCT imaging issues, our framework focuses on different issues in different 
stages so that our framework performs better than single-stage network. 

2. Methods 

2.1. Dual-stage PED segmentation framework 

Given a denoised image Î , we will use convolutional neural networks (CNN), a proven 
powerful DNN-feature extractor, to capture image features and utilize these features to 

differentiate PED regions from Î . We propose to segment PED in a dual-stage manner. We 
built two DNN networks (named S1-Net and S2-Net) to form the main structure of our 
framework (shown in Fig. 2). Fully convolutional networks (FCN), which is an off-the-shelf 
powerful CNN model to extract PED-oriented whole image features to learn end-to-end PED 
segmentation [30], was adopted as the structures of both S1-Net and S2-Net (listed in Table 
1). Following FCN, as the five pooling layers of FCN makes the feature map 32 × 
subsampled resolution, we set filter size to 64 and set stride to 32 to make sure that the 
resolution of obtained segmentation map is same with input image. In our dual-stage learning 
scheme, after normalization and denoising process, we first capture the BM layer from the 
image via the S1-Net model and then use the recognized BM layer as a constraint for the later 
PED recognition and delineation via the S2-Net model. We explain the framework 
architecture in detail as follows. 

Table 1. Structures of Fully Convolutional Networks a 

Type Channel Filter/Pooling size Output size 
c1 + bn1 + r1 64 3 × 3 384 × 384 
c2 + bn2 + r2 64 3 × 3 384 × 384 
p1 64 2 × 2 192 × 192 
c3 + bn3 + r3 128 3 × 3 192 × 192 
c4 + bn4 + r4 128 3 × 3 192 × 192 
p2 128 2 × 2 96 × 96 
c5 + bn5 + r5 256 3 × 3 96 × 96 
c6 + bn6 + r6 256 3 × 3 96 × 96 
c7 + bn7 + r7 256 3 × 3 96 × 96 
p3 256 2 × 2 48 × 48 
c8 + bn8 + r8 512 3 × 3 48 × 48 
c9 + bn9 + r9 512 3 × 3 48 × 48 
c10 + bn10 + r10 512 3 × 3 48 × 48 
p4 512 2 × 2 24 × 24 
c11 + bn11 + r11 512 3 × 3 24 × 24 
c12 + bn12 + r12 512 3 × 3 24 × 24 
c13 + bn13 + r13 512 3 × 3 24 × 24 
p5 512 2 × 2 12 × 12 
512 4096 7 × 7 12 × 12 
fc2 + r15 4096 1 × 1 12 × 12 
fc3 2 1 × 1 12 × 12 
dc 2 32 × 32 384 × 384 
softmax 2 - 384 × 384 
Abbreviations: c, convolution layer; bn, batch normalization; r, rectified linear unit; p, pooling layer; fc, fully 
convolution layer; dc, deconvolution layer; c + r: convolution layer followed by rectified linear unit. softmax, 
decision layer to get segmentation probability map. 
a Fully convolutional network (FCN) is a type of deep neural network (DNN), which forms the basis of our 
framework. The whole settings in the network, from the input to the output of the network, are shown from top to 
bottom. 
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Fig. 2. The flowchart of the proposed framework (dual-stage DNN). The segmentation 
framework mainly consists of two major processing steps in the workflow. First, the location 
of Bruch’s membrane (BM) is determined based on the first deep neural network (DNN) 
(named S1-Net). Then, the pigment epithelium detachment (PED) regions are segmented based 
on the second DNN (named S2-Net) using the BM layer constraint. 

2.1.1 Pre-processing 

As the original images of our data were 512 × 496 pixels, the images were subjected to an 
imresize process to 384 × 384 pixels when fitted in the network, and when final results were 
output from the framework, we use bilinear interpolation to restore the images to the original 
resolution and obtain the final results. Although our used DNN structure (FCN) could adopt 
images with any resolution, we did the normalization for input size to improve efficiency of 
our framework. Normalization for input size is widely used in many DNN based 
segmentation methods [34, 35]. According to the experimental results of these segmentation 
methods, normalization for input size does not affect much in performance. As shown in Fig. 
3(a), due to the signal transmission in OCT machines or other sources of noise, OCT images 
in real clinical practices usually contain unexpected speckles and patterns. To reduce the 
influence of this imaging noise, the probability-based non-local means filter [36, 37], which 
was competitive with other state-of-the-art speckle removal techniques and able to accurately 
preserve edges and structural details with small computational cost on denoising process of 
OCT images, was used to denoise the original images. 

2.1.2 BM layer recognition learning 

To recognize the BM layer from the OCT image, we input the denoised image Î (shown in 

Fig. 3(b)) into S1-Net in which Î is passed into a sequence of convolution and pooling layers 
(as listed in Table 1). The output of the sequence of convolution and pooling layers is highly 

convolved data, which could represent the intrinsic and semantic information of Î . 
Afterwards, the obtained highly convolved data are passed into a deconvolution layer (the last 
layer of S1-Net in Table 1), which is the transpose of the convolution to upsample the 
convolved data. The ground truth of the BM layer corresponding to each training image is 
required for this learning. We pad the regions below the BM layer with foreground pixels on 
the ground truth such that the positive and negative samples are relatively balanced. We 
utilize the padded ground truth to train S1-Net. As shown in Fig. 3(c) and 3(d), we can obtain 
a more compact and precise BM layer with this training compared with training with the line-
based ground truth. Therefore, we could gain a probability map R (shown in Fig. 3(d)), which 

has the same resolution with Î . We use R as the BM layer recognition result. 
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2.1.3 PED delineation learning 

In the PED learning stage, we employ R obtained in the previous stage as prior knowledge to 

assist S2-Net training for PED delineation. Specifically, the intensity image Î is transformed 
into a RGB image G (shown in Fig. 3(e)) such that the recognized BM layer appears red 
on G . We input G into S2-Net and train it with the ground truth of PED regions. Thus, the 
size of input data and the first filter bank are different with S1-Net. As the BM layer is 
imposed on the input data of S2-Net, this constraint is successively and inherently attached to 
the PED-region-oriented feature maps. We use the output of the S2-Net as the segmentation 
map and then adopt a threshold of 0.5 to delineate the PED contour (shown in Fig. 3(f)). 

 

Fig. 3. Illustration of experimental results by different methods. (a) to (f) represent our dual-
stage DNN framework at different steps. (a) original image; (b) result of the denoising 
process; (c) result using the line-based ground truth in the layer recognition learning step; (d) 
result using padded ground truth; (e) input of the pigment epithelium detachment (PED) 
delineation learning step; (f) final result of the automatic PED segmentation; (g) result of the 
ground truth; and (h) result using single-stage DNN. (i) Layer segmentation result of GS + 
ML. From top to bottom, the internal limiting membrane (ILM), the roof of the ellipsoid zone, 
retinal pigment epithelium (RPE) floor and Bruch’s membrane are displayed. (j) PED 
segmentation result of GS + ML. 
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2.2. Framework settings 

We implemented our framework using MatConvNet [38]; the implementation was accelerated 
via GPU computation. The number of training epochs was set to 50, batch size was set to 20 
and learning rate was set to 0.0001; these parameters were derived empirically to produce 
optimal results. Consistent with the original MatConvNet [38], other parameters, including 
batch size, momentum and weight decay, followed the default settings as these were shown to 
be robust in previous works [24, 34]. Our experiments followed a ten-fold cross validation 
protocol where each validation process contains 45 patient scans as a training set and 5 scans 
as a validation set. 

2.3. DNN and optimization in the framework 

The main structure of our framework is FCN that is widely used for image segmentation [30]. 
In this kind of CNN model, convolution and pooling are the two essential layers. When the 
data m h dX × ×∈  pass into the convolution layer, a filter bank { }1 2, , , dF F F ′…  will convolve X  

to produce a d ′ -dimensional feature map. During the training phase, these filters and biases 
will update so that the produced feature maps are more discriminative to differentiate PED. 
Pooling layers usually follow convolution layers in which the resolution of feature maps is 
reduced. These procedures result in obtained features that are less sensitive to input shift and 
distortions [39]. In practice, the input data normally pass into a set of convolution layers and 
pooling layers such that the extracted feature maps are more intrinsic and semantic than the 
low-level hand-crafted features [40]. 

After extracting feature maps, deconvolution layer is embedded to obtain segmentation 
probability map with the same resolution of input image. Deconvolution is the transpose of 
convolution defined as [38]: 

 
( ) ( )

( ) ( ) ( ) ( )

, ,

1 , ,1 , , , 1 , ,1 , ,
1 1 1

H r W rD

i j d ri i z r rj j z r d d i i z r j j z r d
d i j

Y F X
ϕ ϕ

φ φ ϕ ϕ+ + + +

′ ′

+ + − +′′ ′′ ′′ ′ ′′ ′ ′′ ′′ ′ ′ ′′ ′ ′′ ′
′ ′ ′

− +
= = =

= ×    (1) 

where H W D DF ′ ′× × ′×∈  is the weight of deconvolution, X  and Y  are the input and output of 
deconvolution respectively. z  is the size of padding in deconvolution, and r  is the stride of 
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To train the CNN, we minimize softmax log-loss to make CNN evolve to optimal 
segmentation. The loss function is defined as [38]: 
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where S is the set of pixels of all training images, tx  is the output of deconvolution layer of 
t -th channel at the position of x , c is the label of x and λ is the weight decay for 
regularization of learnable weights W . λ is set to 0.0005 empirically. 

2.4. Data set 

Spectral domain OCT volume scans of patients diagnosed with PCV were obtained with a 
Heidelberg Spectralis device (Heidelberg Engineering, Heidelberg, Germany) between March 
2015 and December 2015. The dimension of each OCT volume image is 512 × 97 × 496 
voxels (97 B-scans of 512 × 496 pixels); the resolution is 11.13 µm × 59 µm × 3.83 
µm(Distance between B-scans is 59 µm).1800 OCT B-scans from the 50 patients were used. 
All the B-scans were taken continuously from the PED regions. The tenets of the Declaration 
of Helsinki were followed, and the Institutional Review Board of Shanghai General Hospital, 
Shanghai Jiao Tong University approved the study. Informed consent was obtained from all 
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subjects. The diagnosis of PCV was based on the EVEREST study using angiographic criteria 
[41]. To evaluate the layer segmentation results, two retinal specialists manually labeled PED 
regions, the BM layer and inner limiting membrane (ILM) on each scan (which contains 97 
slices). The results generated by one of the specialists (Expert I) defined the ground truth. For 
subgroup analysis, Expert I classified the PED cases as either simple or complicated, 
following the rule that vascularized PEDs in less than 50% of the slices were defined as 
simple cases, whereas the vascularized PEDs in more than 50% of the slices and with 
hyperreflective exudates around the PED regions were defined as the complicated cases. The 
unsigned border positioning error was calculated by measuring the vertical absolute 
Euclidean distances between the positioned BM layers from the different methods and the 
ground truth [15]. 

2.5. Problem statement and approach to the major challenges 

Given a denoised OCT image Î , the task is to differentiate PED regions from Î in our PCV 
data set. To assign each pixel location to a particular label l in the label space  = { l } = { 

1,…, K} for K classes. We treat the current segmentation task as a K = 2 class classification 
problem. The approach of our dual-stage framework to deal with the major challenges as 
listed below. 

We recognized three major challenges in the previous section: (1) We used DNN to 
address the issue of distorted morphology. Specifically, in DNN, convolution layer is to 
extract and mix image information. With deep convolution layers, the extracted image 
information is more intrinsic to interpret the image. The pooling layers of DNN makes our 
framework less sensitive to the input rotation and shift. Therefore, although there is some 
distorted morphology on OCT images, our DNN based framework could still recognize most 
of PED regions. (2) Our dual-stage learning could solve the challenges of speckles, 
abnormalities and inhomogeneous regions. While a single DNN cannot handle so many 
issues, our proposed model addresses different learning aim in different stage, so it 
expectably decreases the impacts by various issues, so it expectably decreases the impacts by 
various issues. For example, S1-Net is responsible for the recognition of BM layer. As the 
speckles and abnormalities around BM layer is the biggest major issue, S1-Net expectably 
learns to solve the issue by deep learning, regardless of solving intensity homogeneity. On the 
contrary, S2-Net is responsible for PED region detection. In this stage, intensity homogeneity 
inside of PED region becomes the major challenge, so S2-Net expectably learns to solve it 
regardless of other issues. 

2.6. Comparison methods 

The graph theory-based algorithm proposed by Sun, et al [40]. However, the source codes are 
not available and thus we implemented their algorithm as the benchmark in our evaluation. 
The first step of their segmentation algorithm was a multi-scale graph search (GS) algorithm, 
which is mainly based on the work of Shi et al [15]. This theory defines layers in order from 
top to bottom by calculating the dark-to-bright and bright-to-dark boundaries, and the RPE 
layer is defined as one of these boundaries. Then, the BM layer is created by the convexity of 
RPE. PED boundary delineation was conducted via a machine learning (ML) (AdaBoost) 
combined algorithm for marking the regions between these two layers in Sun’s work [40]. 
The parameters we used are shown in Table 2, which are the same from their papers [15, 40]. 
We denote their approach as GS + ML (shown in Fig. 3(i) and 3(j) for the two following steps 
mentioned in their algorithm: layer segmentation and PED segmentation). To verify our 
implemented methods of Sun’s work [40], we validated it on the arbitrary 100 serous PED 
slices from our private data set. We gained 91.77 ± 4.41% DSC, which is consistent with the 
published result (91.20 ± 3.77% DSC) from Sun’s private data set, demonstrating the 
accuracy and robustness of our implemented methods of the data sets from Sun’s work [40]. 
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In addition, a single-stage DNN framework (FCN), directly adopting OCT images without 
the notation of BM layer (shown in Fig. 3(b)), is also comparatively evaluated. The basic 
settings of single-stage DNN framework are the same with our proposed framework as shown 
in Table 1. The example segmentation result of the single-stage DNN framework is shown in 
Fig. 3(g). 

Table 2. Detailed Constraints and Parameter Selection in Layer Detection of a Method 
Based on Graph Theory 

Order in detectiona Layer Layer above Layer below 
Initial detection 

levelb 
Δy in initial 

levelc 

1 ILM N/A N/A 1 6 
2 EZ roof ILM N/A 1 6 
3 RPE floor EZ roof N/A 1 6 
Abbreviations: EZ = ellipsoid zone; ILM = inner limiting membrane; RPE = retinal pigment epithelium. 
a Bruch’s membrane was detected after the RPE floor using the convhull algorithm. PED region segmentation was 
conducted by first locating the area between the RPE and BM, and then a graph cut and morphology combined 
algorithm was used to obtain the final results using AdaBoost. The details were given in the work of Sun et al [40]. 
b Initial detection level: According to Shi et al., the 3D OCT scan is downsampled by a factor of 2 twice in the z-
direction to form three resolution levels [15]. Level 1 represents the lowest resolution, and level 3 represents the 
highest resolution, i.e., the original data. In this manner, their algorithm is multi-resolution. 
c The following two facts are considered when determining the smoothness constraints Δx and Δy for each surface: 
the image resolution and the shape of surfaces. Δx = 1 for all layers and all levels. These two factors form the basis of 
graph search theory. Please find the details in the work of Shi et al [15]. 

2.7. Evaluation metrics 

The true positive volume fraction (TPVF), dice similarity coefficient (DSC), positive 
predictive value (PPV) and false positive volume fraction (FPVF) are used in our evaluation 
[40] and defined as follows: 
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where R V , GV  and εV  are the segmentation results, ground truth and retina volume, 

respectively, between BM and ILM. 

2.8. Statistical analyses 

The results are presented as the mean ± standard deviation (SD) for continuous variables. 
Intergroup differences were tested by t-test. Correlation analysis was used to display the 
correlation of PED volumes measured between different methods and different specialists. 
Bland-Altman analysis was used to analyze agreement [42]. We used 95% limits of 
agreement (LoA) to evaluate agreement between the different methods and experts. Statistical 
significance was set at p<0.05 (two tailed). 
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3. Results 
Fifty SD-OCT scans of PCV patients from Shanghai General Hospital were collected to 
evaluate our proposed framework. The average age of the patients was 66.5 years (95% 
confidence interval [CI], 64.8 – 68.1 years); 64% (32/50) of the patients were male with an 
average best corrected visual acuity (logMAR) of 0.68 (95% CI, 0.58-0.78). Twenty-four 
patients were classified as simple cases, and 26 patients were complicated cases. The final 
segmentation results on SD-OCT images are illustrated in Fig. 4. For serous PED, 
segmentation error mainly occur when there are some discontinuity in the RPE layer (shown 
in the last row of column a). For vascularized PED, segmentation error mainly occurred when 
the PED regions are difficult to distinguish from the surrounding tissues (shown in last three 
rows of column c). 

Our framework was implemented in MATLAB R2016a and run on a desktop PC with a 
GPU NVIDIA GeForce GTX 980 equipped on an Intel Core i7 2.60 GHz machine. The 
average running time of our framework per B-Scan is 0.92 seconds. 

 

Fig. 4. Final automatic pigment epithelium detachment segmentation result of our framework 
compared with the result of the ground truth on different types of PED. The green line 
represents the result of our dual-stage DNN, and the red line represents the ground truth. 
Column (a) and (b) show the serous PEDs and their results. From top to bottom, a small serous 
PED, a large serous PED, two separate serous PEDs and one merged serous PED are 
displayed. Columns (c) and (d) show the vascularized PEDs and their results. Vascularized 
PED regions are more challenging as they may have different intensities and hyperreflective 
exudates above them. The segmentation performance on vascularized PED shows more 
segmentation error than that on serous PED. 
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3.1. Segmentation accuracy of the different methods and experts 

Quantitative assessments of the segmentation performance achieved by the different methods 
are summarized in Table 3. Results from Expert II is comparable with ground truth (Expert I), 
proving the robustness of ground truth. In terms of accuracy, the mean and standard deviation 
of TPVF, DSC, PPV and FPVF for the proposed framework are 85.74 ± 8.69%, 85.69 ± 
8.08%, 86.02 ± 8.99% and 0.38 ± 0.18%, respectively. Higher values of TPVF and DSC 
indicate the PED region is segmented more accurately. Over 85% PPV and less than 0.5% 
FPVF indicates less incorrectly segmented PED regions. Compared with the results from 
state-of-the-art methods based on the graph theory (GS + ML) and single-stage DNN, our 
results exhibited better performance by over 5%. 

Table 3. Pigment Epithelium Detachment Segmentation Accuracy Results by Different 
Methods and Experts a 

Group Method/Expert 
Vs Ground Truth 

True positive 
volume 
fraction (%) 

False positive 
volume 
fraction (%) 

Dice 
similarity 
coefficient (%) 

Positive 
predictive 
value (%) 

All GS + ML 80.30 ± 13.70 
(p = 0.0197) b 

0.54 ± 0.31 
(p = 0.0021) b 

80.52 ± 11.25 
(p = 0.0097) b 

81.83 ± 10.67 
(p = 0.0362) b 

 Single-stage DNN 80.39 ± 13.92 
(p = 0.0 3) b 

0.56 ± 0.38 
(p = 0.0032) b 

80.30 ± 10.89 
(p = 0.0060) b 

81.92 ± 10.07 
(p = 0.0342) b 

 Dual-stage DNN 85.74 ± 8.69 0.38 ± 0.18 85.69 ± 8.08 86.02 ± 8.99 
 Expert II 96.85 ± 2.42 

(p<0.0001)b 
0.18 ± 0.10 
(p<0.0001)b 

94.87 ± 3.19 
(p<0.0001)b 

93.08 ± 4.85 
(p<0.0001)b 

Simple GS + ML 88.80 ± 7.82 
(p = 0.0249) b 

0.63 ± 0.36 
(p = 0.0216) b 

88.96 ± 5.84 
(p = 0.0080) b 

89.47 ± 5.88 
(p = 0.0433) b 

 Single-stage DNN 88.35 ± 7.95 
(p = 0.0146) b 

0.67 ± 0.42 
(p = 0.0150) b 

87.99 ± 4.99 
(p = 0.0002) b 

88.27 ± 5.96 
(p = 0.0058) b 

 Dual-stage DNN 92.93 ± 3.87 0.43 ± 0.20 92.59 ± 2.64 92.42 ± 3.71 
 Expert II 97.33 ± 1.08 

(p<0.0001)b 
0.18 ± 0.09 
(p<0.0001)b 

96.94 ± 1.61 
(p<0.0001)b 

96.59 ± 2.59 
(p<0.0001)b 

Complicated GS + ML 71.40 ± 12.93 
(p = 0.0085) b 

0.46 ± 0.21 
(p = 0.0132) b 

71.70 ± 8.36 
(p = 0.0004) b 

73.84 ± 8.46 
(p = 0.0098) b 

Single-stage DNN 72.43 ± 14.16 
(p = 0.0323) b 

0.45 ± 0.30 
(p = 0.0741) 

72.61 ± 9.70 
(p = 0.0039) b 

75.57 ± 9.36 
(p = 0.0712) 

Dual-stage DNN 79.11 ± 6.23 0.33 ± 0.15 79.32 ± 5.79 80.11 ± 8.37 
Expert II 96.39 ± 2.95 

(p<0.0001)b 
0.19 ± 0.10 
(p<0.0001)b 

93.06 ± 2.97 
(p<0.0001)b 

90.03 ± 4.13 
(p<0.0001)b 

Abbreviations: DNN = deep neural network; GS + ML = a method based on graph theory proposed in Sun. et al 
[40]. p = statistical significance test between dual-stage DNN and other methods. 
a All the results are listed as the mean ± standard deviation in percentage. Statistical tests: To test for differences of 
segmentation accuracy results between dual-stage DNN and other methods/expert, t-test was applied. 
b p<0.05 

3.2. Correlation between the different methods and experts 

A strong correlation is obtained between Expert I and Expert II (r = 0.9997, p < 0.001) in all 
cases, proving the robustness of the ground truth. There is a significant positive correlation 
between our dual-stage DNN framework and different experts (Expert I correlation 
coefficient 0.9986, Expert II 0.9981,p < 0.001 for each).The correlation coefficient of single-
stage DNN (Expert I 0.9666, Expert II 0.9691, p < 0.001 for each) and GS + ML (Expert I 
0.9775, Expert II 0.9781, p < 0.001 for each) are not as high as that of our framework. 

3.3. Agreement of the different methods and experts 
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Table 4. Agreement between the Different Methods and Experts for Pigment Epithelium 
Detachment Segmentation a 

Agreement Mean difference (mm3) P value 95% LoA (mm3) 
Expert II vs Expert I 0.0017 0.4362 −0.0313 to 0.0279 
Progressive DNN vs Expert I 0.0032 0.5003 −0.0691 to 0.0627 
Progressive DNN vs Expert II 0.0016 0.7753 −0.0765 to 0.0734 
Universal DNN vs Expert I 0.0248 0.2865 −0.3441 to 0.2944 
Universal DNN vs Expert II 0.0231 0.2960 −0.3268 to 0.2805 
GS + ML vs Expert I 0.0313 0.1017 −0.2912 to 0.2286 
GS + ML vs Expert II 0.0296 0.1110 −0.2825 to 0.2232 
Abbreviations: DNN = deep neural network; GS + ML = a method based on graph theory proposed in Sun. et al 
[40]; LoA = limits of agreement. 
a Statistical tests: To test for agreement between the different methods and different experts, t-test and Bland-
Altman analyses were applied. 

A comparison of PED volumes measured by the three methods is summarized in Table 4. 
Mean PED volume measurements were not significantly different between different methods 
and experts. However, dual-stage DNN showed the least difference with Expert I (0.0032 
mm3) and Expert I (0.0016 mm3), which is comparable to the difference between experts 
(0.0017 mm3). The difference of the other two methods with different experts is almost ten 
times larger than that of dual-stage methods. In Bland-Altman analysis, dual-stage DNN has 
the lowest 95% LoA with Expert I (−0.0691 to 0.0627 mm3) and Expert II (−0.0765 to 0.0734 
mm3), which is nearly a quarter of the LoA from the other two methods (shown in Fig. 5). 
These differences are acceptable for clinical purposes, as noted in a previous work [40]. Less 
than 5% of points are outside the agreement limits, and the bias is not significant as the line of 
equality is within the confidence interval of the mean difference. 

 

Fig. 5. Evaluation of the volume agreement of pigment epithelium detachment (PED) between 
different methods and different experts represented by separate Bland-Altman plots in the 
whole database. The red dotted line represent the 95% limits of agreement (LoA) (mm3).The 
blue line represent the mean difference (mm3). The agreements of our dual-stage DNN 
framework with Expert I (ground truth) and Expert IIare illustrated in the top row as (a) and 
(b). The agreement between the different experts is illustrated in (c). The two bottom rows 
show the agreements of the comparison methods with Expert I, Expert II and the dual-stage 
DNN: the GS + ML method (illustrated in (d), (e) and (f)) and single-stage DNN (illustrated in 
(g), (h) and (i)). The lowest volume deviation between methods and experts occurred for dual-
stage DNN. 
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3.4. Segmentation performance of the different methods within the subgroups 

The segmentation performance by dual-stage DNN is different within subgroups. In simple 
cases, the mean TPVF, DSC and PPV of our segmentation results are over 92%, and the 
standard deviation is less than 4% (3.87%, 2.64% and 3.71%, respectively). This performance 
is the highest on simple cases among all comparison methods. In complicated cases, the 
proposed method also outperforms all the comparison methods. The results from our 
framework are TPVF and DSC of nearly 80% (79.11% and 79.32%, respectively) and PPV 
over 80% (80.11%). 

3.5. BM layer recognition performance between the different methods 

BM layer recognition is compared between dual-stage DNN and GS + ML because this 
constraint is important for improving segmentation performance. The unsigned border 
positioning error of our layer segmentation methods is 5.71 ± 3.53 μm. The number of errors 
of our dual-stage DNN framework is almost half the number of errors of GS + ML (10.53 ± 
4.69μm, p<0.0001). In addition to the performance difference between algorithms, we also 
notice that the layer recognition result of dual-stage DNN on simple cases is better than that 
on complicated cases by 0.91 μm (p<0.0001). 

4. Discussion 
PCV is characterized by abnormal choroidal vascular networks with aneurismal or polypoidal 
terminations. These choroidal vascular changes lead to morphology changes in RPE, 
characterized as various forms of PED. Multiple PEDs, sharp PED peaks, PED notches, and 
rounded polyp lumens inside the PED regions were helpful in diagnosing PCV based on SD-
OCT [43]. Decreased PED volumes have been observed during resolution with anti-VEGF 
therapy in clinical studies [21, 44]. Treatment based on changes in PED morphology rather 
than on exudatives or hemorrhagic recurrences may improve the long-term visual outcomes 
of this disease. Nevertheless, large samples and long-term clinical studies are needed to 
obtain enough data to support this treatment paradigm. However, data analyses by manual 
segmentation are time consuming and thus limit the design of clinical studies [14]. Automatic 
PED segmentation is the first step for PED morphology analysis of large clinical samples. 
DNN has been successfully applied to tumor segmentation from the normal tissue, such as 
skin, liver and bone tumors [27–29]. Thus, DNN has the potential to be the solution. 

Our dual-stage DNN framework achieved a mean DSC and TPVF of over 85%, 
outperforming the comparative methods. A strong correlation was found between dual-stage 
DNN and different experts. In terms of agreement with human experts, dual-stage DNN has 
the least difference. The mean volume difference with Expert II (0.0016 mm3) is comparable 
to that between different experts (0.0017 mm3). Compared with other methods, dual-stage 
DNN had the closest 95% LoA between different experts. These results demonstrate the 
ability to apply dual-stage DNN for PED segmentation and volume monitoring in PCV 
treatment. 

These improvements can be attributed to the following reasons: (1) using the advantages 
of high-level features from DNN; and (2) utilizing the prior knowledge from BM recognition 
in a dual-stage manner to later assist DNN for PED delineation. The highly reflective 
exudatives above the PED region, which disturb the bright-to-dark boundary delineation, 
lower segmentation performance of GS + ML. However, our learned, highly convolved 
features can effectively represent the intrinsic data structures of different image scenarios to 
self-adapt to various PED cases (serous and vascularized). The BM layer is blurred in some 
cases and thus impedes the feature extraction by a single-stage DNN; in dual-stage DNN, the 
millions of learnable parameters in the DNN model are trained simultaneously to fit the BM 
layer recognition task. Compared to conventional classifier such as AdaBoost with countable 
parameters, DNN adjusts millions of parameters to address the issues of poor quality images. 
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Millions of parameters should work better than countable parameters to complicated 
scenarios. 

Due to the different ratios of serous PEDs to vascularized PEDs between different 
subgroups, the segmentation performance of dual-stage DNN on simple cases is better than 
that on complicated cases. Compared with the image quality in simple cases, poor image 
quality in complicated cases, typically caused by speckles and abnormalities around the PED 
region, lowers the precision of layer recognition and PED region segmentation. As shown in 
Fig. 4, compared with the ground truth, the predicted results of vascularized PEDs by our 
framework could have over/under-segmented, as the PED regions are difficult to distinguish 
from the surrounding tissues. However, the proposed framework still had the highest 
performance. 

In a recent study [21], PED segmentation was conducted in PCV patients using built-in 
commercial software, which was originally developed for drusenoid PED segmentation [20] 
based on threshold-based methods, and manual correction was performed when the automated 
results were incorrect. However, there are some limitations in the software [18, 20]. First, as 
noted in an earlier study, for the PED surrounded by abnormal and highly reflective 
exudatives, the built-in commercial software could not precisely recognize the RPE layer, 
which eventually causes incorrect PED segmentation [18]. We utilized information from the 
whole image fully convolved into the framework to obtain PED segmentation and 
theoretically overcome this challenge. Second, the software was designed to ignore PED with 
a height below a given threshold set to 20 μm [20]. However, branching vascular networks 
and small PEDs in PCV occurred within the 20-μm limitation beneath the RPE layer in some 
cases, which is shown in the first row of column (c) in Fig. 4. Our algorithm set no limitations 
to avoid this problem. With our framework, automated segmentation has the least 
segmentation error; thus this method requires fewer manual corrections, which will save time 
that would otherwise be devoted to manual correction and will therefore permit a larger scale 
population analysis. 

In this study, the algorithm was developed and evaluated with data acquired from a 
Spectralis device. As our framework adopted OCT images with fixed resolution, we used the 
imresize process to ensure that the size of input images was 384 × 384. After the final results 
were obtained from the framework, another imresize process was conducted to restore the 
images to their original size. Furthermore, prior to the segmentation procedure, all images 
were pre-processed for speckle noise reduction by the probability-based non-local means 
filter [36]. Although there are many denoising methods that had good performance, such as 
sparsity based denoising [45, 46], we choose this method as it is competitive with other state-
of-the-art speckle removal techniques and able to accurately preserve edges and structural 
details with small computational cost. Denoising methods such as sparsity based denoising 
could be an option in our framework and will be studied in the future. Besides, FCN was used 
as the basis of our framework, while other single-stage network such as U-net and RelayNet 
could also be employed in our framework [31, 33]. We would like to investigate their 
performance in our framework in the future. Because our segmentation algorithm focuses on 
diseased images, we will build a classifier to separate normal and diseased images prior to 
segmentation in our future work. In addition, our database limited our algorithm testing on 
drusenoid PED, which seldom appears in PCV [47]. Since this type of PED did not show up 
in our PCV database, we will test the performance of our algorithm on it and other diseases in 
the future. 

5. Conclusion 
Our dual-stage DNN framework can be applied to multiple types of PED segmentation 
(serous and vascularized) in PCV patients, which is in contrast to the existing algorithm 
studies that only focused on a particular type of PED. Moreover, our framework can be 
further extended to PED segmentations in central serous chorioretinopathy [48], choroidal 
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neovascularization secondary to age-related macular degeneration [7] and myopic choroidal 
neovascularization [49] in which serous and vascularized PEDs commonly occur. Dual-stage 
DNN, suitable for large database segmentation, can provide needed information for better 
disease management. 

Funding 
National Natural Science Foundation of China (NSFC) (81570851, 81273424) and Project of 
the National Key Research Program on Precision Medicine (2016YFC0904800) 

Disclosures 
The authors declare that there are no conflicts of interest related to this article. 
 

                                                                              Vol. 8, No. 9 | 1 Sep 2017 | BIOMEDICAL OPTICS EXPRESS 4076 




